

pylivy

[image: _images/pylivy.svg]
 [https://travis-ci.org/acroz/pylivy][image: _images/livy.svg]
 [https://pypi.org/project/livy/]Livy [https://livy.incubator.apache.org/] is an open source REST interface
for interacting with Spark [http://spark.apache.org/]. pylivy is a
Python client for Livy, enabling easy remote code execution on a Spark cluster.

Installation

$ pip install -U livy

Note that pylivy requires Python 3.6 or later.

Usage

The LivySession class is the main interface
provided by pylivy:

from livy import LivySession

LIVY_URL = 'http://spark.example.com:8998'

with LivySession(LIVY_URL) as session:
 # Run some code on the remote cluster
 session.run("filtered = df.filter(df.name == 'Bob')")
 # Retrieve the result
 local_df = session.read('filtered')

Authenticate requests sent to Livy by passing any requests Auth object [http://docs.python-requests.org/en/master/user/authentication/] to the
LivySession. For example, to perform HTTP basic auth do:

from requests.auth import HTTPBasicAuth

auth = HTTPBasicAuth('username', 'password')

with LivySession(LIVY_URL, auth) as session:
 session.run("filtered = df.filter(df.name == 'Bob')")
 local_df = session.read('filtered')

API Documentation

	livy.session

	livy.client

Contributing

	Contributing to pylivy
	Asking questions and reporting issues

	Submitting code changes

livy.session

	
class livy.session.LivySession(url, auth=None, verify=True, kind=<SessionKind.PYSPARK: 'pyspark'>, proxy_user=None, jars=None, py_files=None, files=None, driver_memory=None, driver_cores=None, executor_memory=None, executor_cores=None, num_executors=None, archives=None, queue=None, name=None, spark_conf=None, echo=True, check=True)

	Manages a remote Livy session and high-level interactions with it.

The py_files, files, jars and archives arguments are lists of URLs, e.g.
[“s3://bucket/object”, “hdfs://path/to/file”, …] and must be reachable by
the Spark driver process. If the provided URL has no scheme, it’s
considered to be relative to the default file system configured in the Livy
server.

URLs in the py_files argument are copied to a temporary staging area and
inserted into Python’s sys.path ahead of the standard library paths. This
allows you to import .py, .zip and .egg files in Python.

URLs for jars, py_files, files and archives arguments are all copied to the
same working directory on the Spark cluster.

The driver_memory and executor_memory arguments have the same format as JVM
memory strings with a size unit suffix (“k”, “m”, “g” or “t”) (e.g. 512m,
2g).

See https://spark.apache.org/docs/latest/configuration.html for more
information on Spark configuration properties.

	Parameters

	
	url (str) – The URL of the Livy server.

	auth (Union[AuthBase, Tuple[str, str], None]) – A requests-compatible auth object to use when making requests.

	verify (Union[bool, str]) – Either a boolean, in which case it controls whether we
verify the server’s TLS certificate, or a string, in which case it must
be a path to a CA bundle to use. Defaults to True.

	kind (SessionKind) – The kind of session to create.

	proxy_user (Optional[str]) – User to impersonate when starting the session.

	jars (Optional[List[str]]) – URLs of jars to be used in this session.

	py_files (Optional[List[str]]) – URLs of Python files to be used in this session.

	files (Optional[List[str]]) – URLs of files to be used in this session.

	driver_memory (Optional[str]) – Amount of memory to use for the driver process (e.g.
‘512m’).

	driver_cores (Optional[int]) – Number of cores to use for the driver process.

	executor_memory (Optional[str]) – Amount of memory to use per executor process (e.g.
‘512m’).

	executor_cores (Optional[int]) – Number of cores to use for each executor.

	num_executors (Optional[int]) – Number of executors to launch for this session.

	archives (Optional[List[str]]) – URLs of archives to be used in this session.

	queue (Optional[str]) – The name of the YARN queue to which submitted.

	name (Optional[str]) – The name of this session.

	spark_conf (Optional[Dict[str, Any]]) – Spark configuration properties.

	echo (bool) – Whether to echo output printed in the remote session. Defaults
to True.

	check (bool) – Whether to raise an exception when a statement in the remote
session fails. Defaults to True.

	
start()

	Create the remote Spark session and wait for it to be ready.

	Return type

	None

	
property state

	The state of the managed Spark session.

	Return type

	SessionState

	
close()

	Kill the managed Spark session.

	Return type

	None

	
run(code)

	Run some code in the managed Spark session.

	Parameters

	code (str) – The code to run.

	Return type

	Output

	
read(dataframe_name)

	Evaluate and retrieve a Spark dataframe in the managed session.

	Parameters

	dataframe_name (str) – The name of the Spark dataframe to read.

	Return type

	DataFrame

	
read_sql(code)

	Evaluate a Spark SQL satatement and retrieve the result.

	Parameters

	code (str) – The Spark SQL statement to evaluate.

	Return type

	DataFrame

livy.client

	
class livy.client.LivyClient(url, auth=None, verify=True)

	A client for sending requests to a Livy server.

	Parameters

	
	url (str) – The URL of the Livy server.

	auth (Union[AuthBase, Tuple[str, str], None]) – A requests-compatible auth object to use when making requests.

	verify (Union[bool, str]) – Either a boolean, in which case it controls whether we
verify the server’s TLS certificate, or a string, in which case it must
be a path to a CA bundle to use. Defaults to True.

	
close()

	Close the underlying requests session.

	Return type

	None

	
server_version()

	Get the version of Livy running on the server.

	Return type

	Version

	
legacy_server()

	Determine if the server is running a legacy version.

Legacy versions support different session kinds than newer versions of
Livy.

	Return type

	bool

	
list_sessions()

	List all the active sessions in Livy.

	Return type

	List[Session]

	
create_session(kind, proxy_user=None, jars=None, py_files=None, files=None, driver_memory=None, driver_cores=None, executor_memory=None, executor_cores=None, num_executors=None, archives=None, queue=None, name=None, spark_conf=None)

	Create a new session in Livy.

The py_files, files, jars and archives arguments are lists of URLs,
e.g. [“s3://bucket/object”, “hdfs://path/to/file”, …] and must be
reachable by the Spark driver process. If the provided URL has no
scheme, it’s considered to be relative to the default file system
configured in the Livy server.

URLs in the py_files argument are copied to a temporary staging area
and inserted into Python’s sys.path ahead of the standard library
paths. This allows you to import .py, .zip and .egg files in Python.

URLs for jars, py_files, files and archives arguments are all copied
to the same working directory on the Spark cluster.

The driver_memory and executor_memory arguments have the same format
as JVM memory strings with a size unit suffix (“k”, “m”, “g” or “t”)
(e.g. 512m, 2g).

See https://spark.apache.org/docs/latest/configuration.html for more
information on Spark configuration properties.

	Parameters

	
	kind (SessionKind) – The kind of session to create.

	proxy_user (Optional[str]) – User to impersonate when starting the session.

	jars (Optional[List[str]]) – URLs of jars to be used in this session.

	py_files (Optional[List[str]]) – URLs of Python files to be used in this session.

	files (Optional[List[str]]) – URLs of files to be used in this session.

	driver_memory (Optional[str]) – Amount of memory to use for the driver process
(e.g. ‘512m’).

	driver_cores (Optional[int]) – Number of cores to use for the driver process.

	executor_memory (Optional[str]) – Amount of memory to use per executor process
(e.g. ‘512m’).

	executor_cores (Optional[int]) – Number of cores to use for each executor.

	num_executors (Optional[int]) – Number of executors to launch for this session.

	archives (Optional[List[str]]) – URLs of archives to be used in this session.

	queue (Optional[str]) – The name of the YARN queue to which submitted.

	name (Optional[str]) – The name of this session.

	spark_conf (Optional[Dict[str, Any]]) – Spark configuration properties.

	Return type

	Session

	
get_session(session_id)

	Get information about a session.

	Parameters

	session_id (int) – The ID of the session.

	Return type

	Optional[Session]

	
delete_session(session_id)

	Kill a session.

	Parameters

	session_id (int) – The ID of the session.

	Return type

	None

	
list_statements(session_id)

	Get all the statements in a session.

	Parameters

	session_id (int) – The ID of the session.

	Return type

	List[Statement]

	
create_statement(session_id, code, kind=None)

	Run a statement in a session.

	Parameters

	
	session_id (int) – The ID of the session.

	code (str) – The code to execute.

	kind (Optional[StatementKind]) – The kind of code to execute.

	Return type

	Statement

	
get_statement(session_id, statement_id)

	Get information about a statement in a session.

	Parameters

	
	session_id (int) – The ID of the session.

	statement_id (int) – The ID of the statement.

	Return type

	Statement

Contributing to pylivy

Thanks for considering contributing to pylivy!

Asking questions and reporting issues

If you have any questions on using pylivy or would like to make a
suggestion on improving pylivy, please open an issue on GitHub:

https://github.com/acroz/pylivy/issues

Submitting code changes

Before opening a PR [https://github.com/acroz/pylivy/pulls], have a look at
the information below on code formatting and tests. Tests will be run
automatically on Travis [https://travis-ci.org/acroz/pylivy] and must pass
before a PR can be merged.

Code formatting

Code must be formatted with Black [https://black.readthedocs.io/] (with a
line length of 79, as configured in pyproject.toml), plus pass
Flake8 [http://flake8.pycqa.org/] linting and mypy [http://mypy-lang.org/] static type checks.

It’s recommend that you configure your editor to autoformat your code with
Black [https://black.readthedocs.io/en/stable/editor_integration.html] and
to highlight any Flake8 or mypy errors. This will help you catch them early
and avoid disappointment when the tests are run later!

Running tests

pylivy includes two types of code tests; unit tests and integration tests.
The unit tests test individual classes of the code base, while the integration
tests verify the behaviour of the library against an actual running Livy
server.

To run the unit tests, which run quickly and do not require a Livy server to be
running, first install tox (a Python testing tool) if you do not already
have it:

pip install tox

then run:

tox -e py37

tox will build the project into a package, prepare a Python virtual
environment with additional test dependencies, and execute the tests. You can
also run tests against Python 3.6 by replacing py37 with py36 in the
above command.

To run integration tests, you need to first start a Livy server to test
against. For this purpose, I’ve prepared a Docker image that runs a basic Livy
setup. To run it:

docker run --publish 8998:8998 acroz/livy

Then, in a separate shell, run the integration tests:

tox -e py37-integration

Again, you can replace py37 with py36 to change the Python version
used.

Adding tests

Any new contributions to the library should include appropriate tests, possibly
including unit tests, integration tests, or both. Please get in touch by
opening an issue if you’d like to discuss what makes
sense.

Both unit tests and integration tests are written with the pytest [https://docs.pytest.org/] testing framework. If you’re not familiar with it,
I suggest having a look at their extensive documentation and examples first.

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 livy	

 	
 	
 livy.client	

 	
 	
 livy.session	

Index

 C
 | D
 | G
 | L
 | M
 | R
 | S

C

 	
 	close() (livy.client.LivyClient method)

 	(livy.session.LivySession method)

 	
 	create_session() (livy.client.LivyClient method)

 	create_statement() (livy.client.LivyClient method)

D

 	
 	delete_session() (livy.client.LivyClient method)

G

 	
 	get_session() (livy.client.LivyClient method)

 	
 	get_statement() (livy.client.LivyClient method)

L

 	
 	legacy_server() (livy.client.LivyClient method)

 	list_sessions() (livy.client.LivyClient method)

 	list_statements() (livy.client.LivyClient method)

 	
 livy.client

 	module

 	
 	
 livy.session

 	module

 	LivyClient (class in livy.client)

 	LivySession (class in livy.session)

M

 	
 	
 module

 	livy.client

 	livy.session

R

 	
 	read() (livy.session.LivySession method)

 	
 	read_sql() (livy.session.LivySession method)

 	run() (livy.session.LivySession method)

S

 	
 	server_version() (livy.client.LivyClient method)

 	
 	start() (livy.session.LivySession method)

 	state() (livy.session.LivySession property)

 nav.xhtml

 Table of Contents

 		
 pylivy

 		
 livy.session

 		
 livy.client

 		
 Contributing to pylivy

 		
 Asking questions and reporting issues

 		
 Submitting code changes

 		
 Code formatting

 		
 Running tests

 		
 Adding tests

_static/plus.png

_static/file.png

_static/minus.png

